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Part 1: Random Walks on Zd

Random Walk on Lattice

Figure: An illustration for the simple random walk on Z2.
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Part 1: Random Walks on Zd

Random Walk on Lattice

Consider {Xi}i>1 i.i.d. random variables, and let Sn :=
∑n

i=1Xi.

Q: Recurrent or transient ?

Q: Long time behavior ?
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Part 1: Random Walks on Zd

CLT

Theorem (Central Limit Theorem)

For {Xi}i>1 i.i.d. random variables with E[X1] = 0 and Var[X1] = σ2, let
Sn :=

∑n
i=1Xi, then

1√
n
Sn ⇒ N (0, σ2).

Figure: Pierre-Simon Laplace and Johann Carl Friedrich Gauss.
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Part 1: Random Walks on Zd

Local CLT

Theorem (Local Central Limit Theorem)

In the setting X centered with finite variance, if X takes value on integer,
and aperiodic, then we have local CLT that

lim
n→∞

n
d
2 sup
x∈Rd

∣∣∣∣∣P[Sn = bxc]− 1

(2πnσ2)
d
2

exp

(
− |x|

2

2nσ2

)∣∣∣∣∣ = 0.

Q: Convergence rate ?
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Part 1: Random Walks on Zd

Random Walk and Brownian Motion

From the view point of process, (Sn)n>1 can be seen as the trajectory of
random walk.

Theorem (Invariance Principle - Donsker’s Theorem)

The scaling limit of random walk is Brownian motion.(
1√
n
Sbntc

)
t>0

⇒ (σBt)t>0.

Q: What is Brownian motion ? Q: Convergence in which topology ?

Figure: Albert Einstein, Andrei Kolmogorov, Paul Lévy and Kiyoshi Itô.
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Part 1: Random Walks on Zd

Universality of Brownian Motion

Brownian universality: the limit random variable has the law of
Brownian motion despite of the exact law of microscopic behaviors.

Object: Go beyond the sum of independent random variables. Do
these results (CLT, local CLT, invariance principle) also hold for other
models (random walk in random environments, particles with
interactions, hard-sphere model with collisions, etc)?
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Part 2: Random Conductance Model

RWRE

Random walk in random environment: an active topic with rich
properties.

Random conductance model, random walk with reinforcement,
dynamic environment random walk, etc.
Random walk on random graphs: Erdös-Renyi graph, percolation (short
range, long range, continuum...), trees (regular trees, Galton-Watson
trees, uniform spanning trees...), planar maps (uniform, Boltzmann,
decorated ...).

Quenched v.s. Annealed: behavior for almost every environment or
that for averaged environment.
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Part 2: Random Conductance Model

RWRE 1d

Sample i.i.d. random variables {ωx}x∈Z and ω ∈ [c, 1− c] with
c ∈ (0, 1).
Define a Markov chain starting from 0

Pω[Xn+1 = x+ 1|Xn = x] = ωx,

Pω[Xn+1 = x− 1|Xn = x] = 1− ωx.

Theorem (RWRE 1d)

Let ρx := 1−ωx
ωx

, then

E[log ρ0] < 0 =⇒ lim
n→∞

Xn = +∞, P-a.s.,

E[log ρ0] > 0 =⇒ lim
n→∞

Xn = −∞, P-a.s.,

E[log ρ0] = 0 =⇒ lim sup
n→∞

Xn = +∞,

lim inf
n→∞

Xn = −∞ P-a.s..
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Part 2: Random Conductance Model

RWRE 1d

Theorem (1D RWRE)

lim
n→∞

Xn

n
=


1−E[ρ0]
1+E[ρ0] E[ρ0] < 1,

0 E[ρ0] > 1 and E[ρ−1
0 ] > 1,

−1−E[ρ−1
0 ]

1+E[ρ−1
0 ]

E[ρ−1
0 ] < 1.
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Part 2: Random Conductance Model

Random Conductance Model

Sample i.i.d. random conductance {a(e)}e∈Ed
.

Let (Yt)t>0 be a continuous-time Markov jump process starting from
y, with an associated generator either

variable speed random walk VSRW

La
V u(x) :=

∑
z∼x

a({x, z}) (u(z)− u(x)) ;

constant speed random walk CSRW

La
Cu(x) :=

∑
z∼x

a({x, z})
π(x)

(u(z)− u(x)) ,

with π(x) :=
∑

z∼x a({x, z}).
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Part 2: Random Conductance Model

IP for Random Conductance Model

Theorem (Invariance Principle)

When 0 < c 6 a 6 C <∞, the scaling limit of VSRW or CSRW is
Brownian motion. (

1√
n
Ynt

)
t>0

⇒ (σ̄Bt)t>0.

Q: Why we need the bound of a and what happens if this condition fails ?

Chenlin Gu (YMSC) Random Walks and Homogenization September 13, 2022 15 / 44



Part 2: Random Conductance Model

Corrector Method

Identification of the limit: the corrector φei such that
La
V (ei +∇φei) = 0. Then we have

Mt = (Yt · e1 + φe1(Yt), · · · , Yt · ed + φed(Yt)) ,

is a martingale and the martingale convergence theorem applies(
1√
n
Mnt

)
t>0

n→∞
=⇒ (σ̄Bt)t>0 .

Corrector is sublinear: lim supx→∞
φei (x)

|x| = 0, |Ynt| '
√
nt implies

1√
n
φei(Ynt)

n→∞−→ 0.

Q: Why the martingale part will converge to Brownian motion ?

Q: Why the corrector is sublinear ?
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Part 3: Homogenization Theory
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Part 3: Homogenization Theory

Heterogeneous Medium
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Part 3: Homogenization Theory

Homogenization Theory

Elliptic Dirichlet problem with random, symmetric, Zd-stationary and
ergodic coefficient in a large domain{

−∇ · (a∇u) = f in Qr,
u = g on ∂Qr.

For very large r, the solution can be approximated by the
homogenized solution ū for{

−∇ · (ā∇ū) = f in Qr,
ū = g on ∂Qr,

where ā ∈ Rd×d is the (deterministic) effective coefficient.
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Part 3: Homogenization Theory

Viewpoint from PDE
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Part 3: Homogenization Theory

Probabilistic Interpretation

La
V can also be considered as a discrete divergence form ∇ · a∇.

Find an algorithm to solve the elliptic Dirichlet problem quickly for
big r, {

−∇ · a∇u = 0 in int(Qr),
u = g on ∂Qr.

Probabilistic representation is Ea[g(Yτ )] for the hitting time τ of the
boundary, which should be very close to that of “E[g(σ̄Bτ )]”, the
solution of the Dirichlet problem{

−∇ · ā∇ū = 0 in Qr,
ū = g on ∂Qr,

with ā = 1
2 σ̄

2.
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Part 3: Homogenization Theory

Qualitative Homogenization

Theorem (Homogenization)

For periodic coefficient or stationary ergodic coefficient, we have

u ' ū in L2,

Gradient : ∇u ' ∇ū in H−1,

F lux : a∇u ' ā∇ū in H−1.

Q: What is the convergence rate ?

Chenlin Gu (YMSC) Random Walks and Homogenization September 13, 2022 22 / 44



Part 3: Homogenization Theory

Quantitative Stochastic Homogenization

Generally, ā 6= E[a].

ā is the limit of the averaged Dirichlet energy

ν(Qr, p) := inf
φ∈H1

0 (Qr)

1

|Qr|

∫
Qr

1

2
(p+∇φ) · a(p+∇φ)

ν(Qr, p) =
1

2
p · ā(Qr)p,

ā = lim
r→∞

ā(Qr).

Theorem (Stochastic Homogenization)

There exists α ∈ (0,∞), such that |ā− ā(Qr)| ' r−α.

Q: How can we measure this stochastic error ?

Q: What can we deduce from this convergence ?
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Part 3: Homogenization Theory

History

Qualitative homogenization: 1970-2000.
Quantitative homogenization: 2000-present.

Figure: Some researchers who contribute to homogenization theory: Alain Bensoussan,
Jacques-Louis Lions, George Papanicolaou, Ennio De Giorgi, François Murat, Luc Tartar,
Thomas Spencer, S. R. Srinivasa Varadhan, Tatsien Li, Grégoire Allaire, Marco Avellaneda,
Carlos Kenig, Fanghua Lin, Zhongwei Shen, Felix Otto, Antoine Gloria, Stefan Neukamm, Scott
Armstrong, Charles Smart, Jean-Christophe Mourrat, Tuomo Kuusi.
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Part 4: Random Walk on Percolation Cluster

Random walk in the labyrinth

Question: What happens for the random walk in the labyrinth ?
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Part 4: Random Walk on Percolation Cluster Introduction

Definition

Definition (Bernoulli percolation on Zd)

We denote by (Zd, Ed) the d-dimension lattice graph. A Bernoulli
percolation configuration {a(e)}e∈Ed

is an element of {0, 1}Ed , and its law
is given by

{a(e)}e∈Ed
i.i.d. ,P[a(e) = 1] = 1− P[a(e) = 0] = p.

We say that the edge e is open if a(e) = 1 and the edge e is closed if
a(e) = 0. A connected component given by a will be called cluster.
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Part 4: Random Walk on Percolation Cluster Introduction

Example of percolation (p = 0.4, 0.5, 0.6)
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Part 4: Random Walk on Percolation Cluster Introduction

Phase transition

θ(p) := P[0 belongs to an infinite cluster C∞].

It is easy to show that θ(p) is monotone.

pc := inf{p ∈ [0, 1] : θ(p) > 0}.

Theorem (Broadbent, Hammersley 57)

For d > 2, we have 0 < pc < 1.

We call the regime 0 6 p < pc subcritical, p = pc critical and
pc < p 6 1 supercritical.

Furthermore, by Kolmogorov 0-1 law, in subcritical case a.s. there is
no infinite cluster. In supercritical case a.s. there exists a unique
infinite cluster C∞.

Critical case: we conjecture θ(pc) = 0, but it is open for 3 6 d 6 10.
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Part 4: Random Walk on Percolation Cluster Introduction

Infinite cluster C∞ in supercritical percolation

Figure: The cluster in blue is the maximal cluster in the cube.
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Part 4: Random Walk on Percolation Cluster Introduction

IP on Percolation

Theorem (Invariance Principle)

The invariance principle also holds for VSRW and CSRW on the infinite
cluster of supercritical percolation.

Figure: Vladas Sidoravicius, Alain-Sol Sznitman, Marek Biskup, Noam Berger, Pierre Mathieu,
Andrey Piatnitski, Martin Barlow, Ben Hambly.
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Part 4: Random Walk on Percolation Cluster Introduction

Random Walk on Percolation

We focus on the case supercritical percolation.

(Xt) is a continuous-time Markov jump process starting from
y ∈ C∞, with an associated generator

∇ · a∇u(x) :=
∑
z∼x

a({x, z}) (u(z)− u(x)) .

The quenched semigroup is defined as

p (t, x, y) = pa (t, x, y) := Pa
y (Xt = x) ,

which also solves the equation on C∞ that{
∂tp (t, ·, y)−∇ · a∇p (t, ·, y) = 0 ,
p (0, ·, y) = δy(·) .
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Part 4: Random Walk on Percolation Cluster Introduction

Quantitative Local CLT on Percolation

Theorem (Dario, Gu, AOP 2021)

For each exponent δ > 0, there exist a positive constant C(d, p, δ) <∞
and an exponent s(d, p, δ) > 0, such that for every y ∈ Zd, there exists a
non-negative random time Tpar,δ(y) satisfying the stochastic integrability
estimate

∀T > 0, P (Tpar,δ(y) > T ) 6 C exp

(
−T

s

C

)
,

such that, on the event {y ∈ C∞}, for every x ∈ C∞ and every
t > max (Tpar,δ(y), |x− y|),

∣∣p(t, x, y)− θ(p)−1p̄(t, x− y)
∣∣ 6 Ct−

d
2
−( 1

2
−δ) exp

(
−|x− y|

2

Ct

)
.

Remark: θ(p) = P[0 ∈ C∞] is the factor of the density normalization.
(p̄(t, · − y))t>0 is the semigroup of the limit Brownian motion (σ̄Bt)t>0.
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Part 4: Random Walk on Percolation Cluster Introduction

t
d
2p(t, ·, 0) vs. t

d
2

∣∣p(t, ·, 0)− θ(p)−1p̄(t, ·)
∣∣

Figure: t = 500.
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Part 4: Random Walk on Percolation Cluster Introduction

t
d
2p(t, ·, 0) vs. t

d
2

∣∣p(t, ·, 0)− θ(p)−1p̄(t, ·)
∣∣

Figure: t = 1000.
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Part 4: Random Walk on Percolation Cluster Introduction

t
d
2p(t, ·, 0) vs. t

d
2

∣∣p(t, ·, 0)− θ(p)−1p̄(t, ·)
∣∣

Figure: t = 4000.
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Part 4: Random Walk on Percolation Cluster Introduction

Two-Scale Expansion

Two-scale expansion

w(t, x, y) = p̄(t, x, y)︸ ︷︷ ︸
0th order

+

d∑
k=1

∂kp̄(t, x, y)φek(x)︸ ︷︷ ︸
1st order

,

where {φek}16k6d is the collection of corrector solving

∇ · a(ek +∇φek) = 0 on C∞.

The corrector is sublinear φek(x) = o(|x|), and has nice cancellation

property for its centered flux gek := a(ek +∇φek)− σ̄2

2 ek.
w is close both to p̄ and to p:

w − p̄ =

d∑
k=1

∂kp̄(t, x, y)φek ' |∇p̄|,

(∂t −∇ · a∇)(w − p) ' gek .
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Part 4: Random Walk on Percolation Cluster Introduction

Two-Scale Expansion

(w − p) is small in the weak sense.
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Part 4: Random Walk on Percolation Cluster Introduction

Challenge on Percolation Cluster

Delmotte (1999) proves the Gaussian bound for Markov chain on
graph satisfying the double volume condition and the Poincaré
inequality.

However, the Poincaré inequality is perturbed by the random
geometry of the cluster, and the uniform ellipticity is also broken.

In the work of Barlow (2004), he introduces the idea of good cube in
percolation cluster.

This technique is improved in the work of Armstrong and Dario
(2018).
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Part 4: Random Walk on Percolation Cluster Introduction

Partition of Good Cube

Figure: Decomposition of a big cube into of disjoint small cubes with good properties
Armstrong, Dario (2018).
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Part 4: Random Walk on Percolation Cluster Introduction

Further Discussions
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Part 4: Random Walk on Percolation Cluster Introduction
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Part 4: Random Walk on Percolation Cluster Introduction
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Part 4: Random Walk on Percolation Cluster Introduction

Thank you for your attention.
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