Homework 1: First Order ODE

Due: 09/24/2021

Lecturer: Chenlin Gu

Throughout the exercises, we always use y(t) to represent the unknown function and t for variable.

Exercise 1. (3 points) Draw the directional field of $y' = \sin(t), y' = \cos(t), y' = y \cos(t)$.

Exercise 2. (3 points) Solve the following initial value problem.

- 1. $y' = \sin(5t)$ for y(0) = 2.
- 2. $y' = e^t + t$ for y(0) = 0.
- 3. y' = (y 1)(y + 1) for y(0) = 3.

Exercise 3. (3 points) Take y' = f(t, y), y(0) = 0, where f(t, y) > 1 for all t and y. If the solution exists for all t, can you say what happens to y(t) as t goes to positive infinity? Explain.

Exercise 4. (3 points) Is it possible to solve the equation $y' = y\sqrt{|t|}$ for y(0) = 0? Is the solution unique? Justify.

Exercise 5 (A simple example of fixed point). (3 points) Let $f(x) = \frac{x^2+1}{2}$, and we construct an *iteration* $x_{n+1} = f(x_n)$. Then, for any $x_0 \in [-1, 1]$, prove that

- 1. This iteration admits a limit that $\lim_{n\to\infty} x_n = x_*$.
- 2. This limit x_* does not depend on the initial value.
- 3. Calculate x_* .

Exercise 6 (On Banach fixed point theorem). (5 points)

- 1. State the Banach fixed point theorem.
- 2. Explain why this theorem requires a complete metric space.
- 3. Prove this theorem.
- 4. Justify briefly how this theorem is applied to Picard's iteration.