Homework 1: First Order ODE

Due: 09/24/2021
Lecturer: Chenlin Gu

Throughout the exercises, we always use $y(t)$ to represent the unknown function and t for variable.
Exercise 1. (3 points) Draw the directional field of $y^{\prime}=\sin (t), y^{\prime}=\cos (t), y^{\prime}=y \cos (t)$.
Exercise 2. (3 points) Solve the following initial value problem.

1. $y^{\prime}=\sin (5 t)$ for $y(0)=2$.
2. $y^{\prime}=e^{t}+t \operatorname{for} y(0)=0$.
3. $y^{\prime}=(y-1)(y+1)$ for $y(0)=3$.

Exercise 3. (3 points) Take $y^{\prime}=f(t, y), y(0)=0$, where $f(t, y)>1$ for all t and y. If the solution exists for all t, can you say what happens to $y(t)$ as t goes to positive infinity? Explain.

Exercise 4. (3 points) Is it possible to solve the equation $y^{\prime}=y \sqrt{|t|}$ for $y(0)=0$? Is the solution unique? Justify.

Exercise 5 (A simple example of fixed point). (3 points) Let $f(x)=\frac{x^{2}+1}{2}$, and we construct an iteration $x_{n+1}=f\left(x_{n}\right)$. Then, for any $x_{0} \in[-1,1]$, prove that

1. This iteration admits a limit that $\lim _{n \rightarrow \infty} x_{n}=x_{*}$.
2. This limit x_{*} does not depend on the initial value.
3. Calculate x_{*}.

Exercise 6 (On Banach fixed point theorem). (5 points)

1. State the Banach fixed point theorem.
2. Explain why this theorem requires a complete metric space.
3. Prove this theorem.
4. Justify briefly how this theorem is applied to Picard's iteration.
