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Green’s Theorem

Recap: Integral of Vector Field (1-Form)

Theorem (Integral of Vector Field)

Let γ : [a, b]→ Rd a regular curve (so C1([a,b]), with d components
(γ1, γ2 · · · γd). Let the force field F : Rd → Rd a continuous field, i.e.

F = (F1,F2, · · ·Fd),∀i,Fi ∈ C(Rd).

Then we define that∫
γ

F dγ :=

∫ b
a

F(t) · γ′(t) dt =
d∑
i=1

∫ b
a

Fi(t)γ′i(t) dt.

Moreover, for two equivalent regular curves γ, β, we have∫
γ

F dγ =

∫
β

F dβ.
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Green’s Theorem

Integral of Vector Field (1-Form) in R2

1 d = 2, γ : [0, 1]→ R2.
2 F = (F1,F2), in language of 1-form, F = F1dx1 + F2dx2.
3 ∫

γ
F dγ =

∫ 1
0

F(γ(t)) · γ′(t) dt =

∫
γ

F1dx1 + F2dx2.
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Green’s Theorem

Integral of Vector Field (1-Form) in R2

Let (γ(t))t∈[0,1] = (x1(t), x2(t))t∈[0,1] and plugin in
∫
γ

F1dx1 + F2dx2 by
parameterization:∫

γ
F1dx1 + F2dx2 =

∫ 1
0

F1(γ(t))dx1(t) + F2(γ(t))dx2(t)

=

∫ 1
0

F1(γ(t))x′1(t) + F2(γ(t))x′2(t) dt

=

∫ 1
0

F(γ(t)) · γ′(t) dt.

Thus the two define the
∫
γ

F dγ.
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Green’s Theorem

Differential of 1-Form

1 d = 2.
2 Differential of 0-form: df = ∂f

∂xdx + ∂f
∂ydy.

3 Differential of 1-form: F = Pdx + Qdy,

dF :=

(
∂Q
∂x
−
∂P
∂y

)
dxdy.

4 A more formal way

dF =

(
∂P
∂x

dx +
∂P
∂y

dy
)
∧ dx +

(
∂Q
∂x

dx +
∂Q
∂y

dy
)
∧ dy

dx ∧ dx = dy ∧ dy = 0

dx ∧ dy = −dy ∧ dx

dF =

(
∂Q
∂x
−
∂P
∂y

)
dx ∧ dy.
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Green’s Theorem

Green’s Theorem

Theorem (Green’s Theorem)

Let D ⊂ R2 be a region, with boundary ∂D is piece-wise smooth,
positively oriented, closed and let F = Pdx + Qdy a C1 1-form on D,
then we have ∫

D
dF =

∫
∂D

F. (1.1)

That is, ∫
D

(
∂Q
∂x
−
∂P
∂y

)
dxdy =

∫
∂D

P dx + Q dy. (1.2)

Remark: C1 1-form means in F = Pdx + Qdy, P,Q are C1.
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Green’s Theorem

Boundary in Green’s Theorem

Heuristicly speaking, the interior part of the domain is always on the
left hand side when we walk along the direction of the boundary.
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Proof

Step 1: An Easy Case in I2 = [0, 1]2

∫
I2

dF =

∫ 1
0

∫ 1
0

(
∂Q
∂x
−
∂P
∂y

)
dxdy

=

∫ 1
0

(∫ 1
0

∂Q
∂x

dx
)

dy −
∫ 1
0

(∫ 1
0

∂P
∂y

dy
)
dx

=

∫ 1
0

Q(1, y) dy −
∫ 1
0

Q(0, y) dy −
∫ 1
0

P(x, 1) dx +

∫ 1
0

P(x, 0) dx.
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Proof

Step 1: An Easy Case in I2 = [0, 1]2

∫
∂I2

F =

∫
γ1

F +

∫
γ2

F +

∫
γ3

F +

∫
γ4

F

=

∫ 1
0

P(x, 0) dx +

∫ 1
0

Q(1, y) dy −
∫ 1
0

P(x, 1) dx −
∫ 1
0

Q(0, y) dy.
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Proof

Step 2: Result in Simple Connected Domain

φ : I2 → D and the result is a detailed change of variable.
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Proof

Step 3: In the Case with Genus

We do decomposition of domain and apply the result of simply
connected domain one by one.
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Proof
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Characterization of Exact 1-Form
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Characterization of Exact 1-Form

Characterization of Exact 1-Form

Theorem

Let F = Pdx + Qdy be a C1 1-form, then the following conditions are
equivalent
1 It is exact.
2 There exits a potential function f such that F = df. (F is gradient

field)
3

∂Q
∂x = ∂P

∂y .

4
∫
γ

F are equal for all the regular curve γ connecting a and b.
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Characterization of Exact 1-Form

Characterization of Exact 1-Form

Proof.

(1) and (2) are equivalent by definition.

(2)⇒ (3), in this case we have P = ∂f
∂x ,Q = ∂f

∂y . Since they are C1,
we have

∂Q
∂x

=
∂2f
∂x∂y

=
∂2f
∂y∂x

=
∂P
∂y
.

�
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Characterization of Exact 1-Form

Characterization of Exact 1-Form

(3)⇒ (4), let γ1, γ2 two regular curves connecting A and B, we
make two together as a closed curve γ3 = γ1 ∪ γ̄2, and it suffices to
prove

∫
γ3

F = 0. We use Green’s theorem: let D be the domain
with boundary γ3∫

γ3

F dγ3 =

∫
D

(
∂Q
∂x
−
∂P
∂y

)
dxdy = 0.

This concludes that
∫
γ1

F =
∫
γ2

F.

(4)⇒ (1), we can construct explicitly a potential function: set
f(0) = 0 and f(a) =

∫
γ

F with a curve connecting 0, a. This
definition defines a potential field.
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